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Bayesian reasoning in science

Colin Howson and Peter Urbach

Bayesian scientific reasoning has a sound foundation in logic and provides a unified approach to the
evaluation of deterministic and statistical theories, unlike its main rivals.

Ours is an uncertain world, though fortu-
nately all things are not equally uncertain.
But we are used to grading uncertainty. We
are fairly certain, for example, that the text-
book ‘laws’ of physics will remain valid for
the foreseeable future, and very certain that
they will remain in force through next week.
We are much less certain about tomorrow’s
weather. We not only grade uncertainty —
sometimes we measure it numerically, as in
effect we do when we talk about the odds we
think are merited by some predictive hy-
pothesis or other. The more certain we are
that an event will or will not take place, the
longer (bigger) or shorter (smaller) the odds
we are prepared to give.

Gamblers use the odds scale because odds
tell you directly the proportions in which the
stakes are divided after the outcome. But it is
not a very good scale on which to measure
uncertainty as such. Because odds are ratios
the odds scale starts at 0 and is unbounded to
the right (infinite odds). An equally balanced
uncertainty, corresponding to 1 on the odds
scale, therefore cannot be represented as a
midpoint. To symmetrize, we transform
odds into the scale of probabilities, using the
formula probability (p) = odds/(1 + odds),
and put the probability corresponding to in-
finite odds equal to 1. So probabilities lie be-
tween 0 and 1 inclusive, and even-money
odds now become the midpoint of the prob-
ability scale, as desired.

Axioms
The formal theory of probability was born in
the late seventeenth century in the work of
Fermat, Pascal, Huyghens and James Ber-
noulli. It is summarized today in four basic
laws, or axioms. The first says that the prob-
ability of any hypothesis h is a non-negative
real number: P(h) = 0. The second says that
the probability of any necessary truth tis 1:
P(t) =1 (a necessary truth is one that is true
whatever the world might be like; if it is rain-
ing then it is raining’ is an example). The
third, ‘the additivity principle’, says that if h
and h’ are mutually exclusive then the sum of
their probabilities equals the probability of
their disjunction: in symbols, P(h) + P(h") =
P(h or h"). The fourth, says that the condi-
tional probability P(h!h") of h given b/, is
equal to the unconditional probability
P(h&h") of the conjunction h and h’, divided
by the unconditional probability P(h") of h’
where that probability is positive: in symbols,
P(h1h')= P(h&h") / P(h’), where P(h") > 0.
Mathematical probability theory began
life as theory of uncertainty. But in the late
nineteenth century the probability axioms
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became recognized also as the laws of objec-
tively random phenomena, or objective
chance. Chance turns out to play an essential
role in modern science, in the theory of stat-
istical sampling, information theory, demo-
graphy, genetics, thermodynamics and
quantum theory.

Our concern here is with the older idea of
probability as the foundation of a theory of
uncertainty. We shall show how some mod-
ern developments endorse thisidea, and how
they enable us to see the rules of the prob-
ability calculus as a logic of inductive in-
ference. Suppose h is some scientific hypo-
thesis. Experimental data can never conclu-
sively prove that h is true, even if it is true. So
you are never absolutely certain of h's truth,
only more or less. The inductive inference
consists in assessing the degree of certainty
warranted by the evidence. To the heirs of
Bernoulli and Laplace, this means measuring
the probability of h relative to data e. Scien-
tists often estimate the probabilities of the-
ories, but attempts to provide an objective
basis for these estimates have uniformly
failed.

But if the probability of a hypothesis
merely reflects our own personal degree of
belief in h, how can an objective logic of in-
ductive inference be based on such probabil-
ities? There isno paradox here. Your degrees
of belief may be personal to you, but it does
not follow that they are necessarily unprin-
cipled or anarchic — in the first place, they
must satisfy the axioms of probability. Of the
many arguments that have been advanced to
demonstrate this, the simplest is due to Frank
Ramsey and Bruno de Finetti, who dis-
covered it independently in the 1920s and
30s.

Their result is often called the Dutch book
theorem. Consider a contract whereby one
party agrees to exchange with the other a sum
pS for the chance of receiving S if h is true
and nothing if h is false. §is a non-zero sum
of money or some other divisible good, called
the stake. The payoffs to the first party thus
are S-pS if h is true and -pS if h is false
(the payoffs to the other party are of course
the same with the signs reversed). The con-
tract is tantamount to a bet in which the first
party is betting on h at odds pS:(S-pS), that
is, odds p:(1-p). It is easy to see that pis the
quantity obtained by symmetrizing the odds
through the transformation p = odds/
(1+ odds), we introduced earlier. There we
called p a probability, but so as not to
prejudice matters we shall now call it the bet-
ting quotient associated with the odds.

Suppose pis such that you deem the odds

© 1991 Nature Publishing Group

p:(1— p) fair, in the sense that to the best of
your knowledge there is no advantage to tak-
ing either side of the bet. It is customary to
identify this value of p with your degree of
belief in h. Now consider some arbitrary fi-
nite set of hypotheses h;,, where p, are your
corresponding fair betting quotients on the
h;. A betting strategy with respectto the h;isa
set of decisions of the form ‘bet on (against)
h;, for each i. Ramsey and de Finetti showed
that if the p, do not satisfy the probability
axioms, then there are stakes §; and a betting
strategy for the h; which must result in a cer-
tain loss for whoever follows that strategy
(such a set of stakes is known as a Dutch
book). Hence you cannot consistently main-
tain that the p, are all fair if they do not satisfy
the probability axioms.

Proof

The proof of the Ramsey-de Finetti result
uses no more than high-school algebra. Con-
sider axiom 2 of the probability calculus, that
P(t)= 1iftis anecessary truth. Suppose that
p= P(t)is greater than 1. Because tis necess-
arily true the bettor on t will make a guaran-
teed loss of Sp —S. If pis less than 1 then the
bettor against t willmake a guaranteed loss of
S—Sp. Either way one party or the other is
guaranteed to lose, and so no value for p
other than 1 can be fair. Itis equally simple to
see why P(h) must be non-negative, where h
is any hypothesis, and only slightly less
straightforward to see how to justify the
remaining two axioms of the probability
calculus.

An immediate consequence of the prob-
ability axioms is Bayes’s theorem, which has
given its name to this approach. Thomas
Bayes (1702—1761) was an English Non-
conformist clergyman, a gifted mathemati-
cian, and a fellow of the Royal Society. His
seminal work on probability is contained in
one short memoir published posthumously
in 1763.

Bayes’s theorem says that, for any prop-
ositions h and e

Phie) = LEAD) (1)
Pe)

In the usual applications of the theorem, h is
some hypothesis and e the evidence against
which it is to be evaluated. P(hle) is the
posterior probability of h on e, P(h) is the
prior probability of h, and P(elh) is the
likelihood of h on e. Equation 1 can be
rewritten as:

P(hle) <« P(elh)P(h)
That is, posterior probability is proportional
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to prior probability multiplied by likelihood.
P(elh) can be interpreted as the degree of
determinateness with which h explains e, and
P(h) is your estimate of the weight of evi-
dence in favour of h before you know e. In
practice it is by balancing empirical and
prior factors in just this sort of way that hypo-
theses are evaluated. Neither factor by itself
is decisive: the empirical success may, we
might feel, be merely freakish, whereas the
prior plausibility needs to be checked against
empirical tests.

Elements

The probability calculus does more than ex-
plain how states of belief decompose into a
priori and empirical elements. It also shows
how the factor P(e1h) / P(e) in Bayes’s the-
orem, can be analysed to explain finer struc-
ture present in our informal reasoning. To
see how, we need to invoke a further simple
consequence of the probability axioms;
namely, that

P(e) = P(elh)P(h)+P(el ~h) P(~h)
where ~h is the negation, or denial, of h.
Substituting in equation 1, we get

Phie)= Aeih)Ah) )

P(e1h)P(h) + P(el ~h)P(~h)
Equation 2 tells us that P(h | e) depends also
on both the factors Aelh) and P(e!~h), or
how probable e would be were h true or false,
respectively. This dependence is more
clearly brought out in the following equiva-
lent formulation

Phle)=

P(h)
P(hy+P(e] ~h)P(~h)
P(elh)

Equation 3 says that because P(~h)=
1 — P(h), the posterior probability of h on e
depends only on P(h) and on the size of the
so-called likelihood ratio P(e! ~h): P(elh),
and approaches 1 as this ratio approaches 0.
Itis not difficult to show thatif h’ is any hypo-
thesis implying ~h, that is h’ is a potential
alternative to h as an explanation of e, then
the factor P(eh)is an increasing function of
P(eIh)P(h’): in other words, the degree of
confidence one will repose in h on the basis of
e decreases with the extent to which e is
explained by any plausible alternative to h.
This is of course exactly the informal crite-
rion used in practice for a strong positive
evaluation of any hypothesis: no hypothesis
is ever regarded as secure until there is no
plausible alternative explanation of the data.

Scientific methodologies have to take a
view about the kinds of conclusion scientists
draw, and should provide appropriate mech-
anisms for those inferences. The bayesian
method meets these conditions by charac-
terizing a scientific conclusion about a hy-
pothesis as a statement of its probability, and
by providing Bayes’s theorem as the mech-
anism for calculating that probability.

But bayesianism has been widely criticized
because itis based on personal, hence subjec-
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tive, probabilities. Scientific inference,
critics say, should be perfectly objective. As
one leading antibayesian philosopher put it:
“The cognitive value of a theory has nothing
to do with its psychological influence on
people’s minds . .. [but] depends only on
what objective support it has in facts”.

The objectivist ideal implicit in such criti-
cisms is immensely attractive; it would be
nice if disagreements in science could be re-
solved by taking the contending hypotheses
and impartially measuring their ‘objective
cognitive values’. Butis there any such thing?

Karl Popper and R. A. Fisher are among
those who have tried to devise a purely objec-
tive methodology. Popper’s starting point
was the fact that general, deterministic hy-
potheses (simple example: ‘All swans are
white’) can often be decisively falsified by
evidence (for example, ‘this is a black swan’).
And his famous thesis is that only hypotheses
that are falsifiable by possible or conceivable
observations are scientific. A scientific the-
ory may also make predictions which can
then be experimentally checked. If the pre-
dictions are verified, Popper calls the theory
corroborated. Now this is a perfectly objec-
tive statement about the theory, but does it
amount to an evaluation, or carry informa-
tion about the theory’s cognitive value? Pop-
per acknowledges that the hypothesis is not
conclusively proved in the corroboration
process; nor can it be said that its objective
probability is augmented, because, as we
shall explain, no one has managed to
make sense of the notion of a theory’s objec-
tive probability. How then can one interpret
the corroboration notion without regarding
it, Bayes-like, as reflecting our enhanced
subjective belief in the corroborated hypo-
thesis? Popper sometimes says that it is ra-
tional to prefer a corroborated hypothesis
over one that is not, on the grounds that it is
better tested; but this turns out, disappoint-
ingly, to bejust another way of saying thatitis
corroborated. The dismal fact is that, as
Popper conceded, a theory’s degree of cor-
roboration is simply a record of its perfor-
mance in the various tests, with no implica-
tion for its ‘cognitive value’.

A statistical hypothesis attributes statisti-
cal probabilities, or chances, to events. These
are not the subjective degree-of-belief prob-
abilities discussed earlier, but objective
properties of repeatable experiments. A
simple example is the hypothesis that a par-
ticular coin is fair, that is, has equal statistical
probabilities of a half of landing heads and
tails. And what this is standardly taken to
mean is that if you tossed the coin repeatedly,
the relative frequency of heads in the result-
ing sequence of outcomes would tend to 0.5,
as the number of throws increased to infinity.

Modern science deals extensively with
statistical theories, so how they are tested
and evaluated is an important question. But
Popper’s approach is inapplicable to statisti-
cal hypotheses, which are not falsifiable.

The question of how to test and evaluate
statistical hypotheses in an objective, non-
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bayesian way was taken up by Fisher in the
1920s, and his approach has developed into
an influential body of doctrine, known as the
classical theory of statistical inference.

Classical statistical inference has two prin-
cipal parts, the first relating to the testing of
hypotheses (using signficance tests) and the
second to estimating the values of unknown
parameters. The essential principles of
classical inference can be appreciated
through the simplest examples. Consider
again the hypothesis that this coin is fair. To
test it, you might toss the coin a predeter-
mined number of times, say 20, and count
the number of heads obtained. There are 21
possibilities, ranging from no heads and 20
tails to 20 heads and no tails. For a signific-
ance test, the statistical probability of each,
relative to the test, or null hypothesis, must
be calculated. The classical method is then to
choose a subset of the possible results —
usually in one or both of the distribution’s
tails. Several considerations dictate this sub-
set (or critical region); an important one is
that the probability that any actual outcome
of the experiment falls within it when the null
hypothesis is true is fairly small; 0.05 has es-
tablished itself as an acceptably small value.
Finally, if the outcome obtained in the ex-
periment is in the critical region, it is said to
be ‘significant at the 5 per cent level’.

Whether a result is significant at a particu-
lar level seems a perfectly objective fact. And
classical statisticians believe that from it one
can draw a similarly objective judgment
about the null hypothesis. Hence, a result
significant at the 5 per cent level is said to en-
title one to ‘reject the null hypothesis at the 5
per cent level’.

The meaning of this expression needs ana-
lysis, however, for although the idea of re-
jecting a hypothesis s fairly intuitive, the idea
of doing so at some percentage level is not.
Fisher sometimes wrote of the hypothesis
being disproved in a significance test, though
he of course knew that there can be no logical
disproof of statistical hypotheses. Statisti-
cians now agree that all one can infer for cer-
tain about a hypothesis confronted with a
significant result is that either the hypothesis
is true, in which case the result is relatively
improbable, or it is false. Indeed, Fisher held
that the “force of a test of significance”
resided precisely in this dichotomy. But the
dichotomy has no force, as it says nothing
about the null hypothesis beyond the
tautology that it is either true or false.

Advice

Another response to a significant result is
due to Jerzy Neyman and Egon Pearson,
who invented the currently standard form of
a significance test, which is slightly more
complicated than that given above, in that ri-
vals to the null hypothesis are brought into
the picture. Neyman and Pearson suggested
that although we are not entitled to believe
that the null hypothesis is false, we should act
in our practical life as if we did believe that.
This oft-repeated advice is always justified
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by saying that if you performed significance
tests repeatedly and if each time the result
was significant at the 5 per cent level you
acted as if believing the null hypothesis was
false, you would “in the long run” be wrong
on only “around 5 per cent” of the occasions.

This argument, although superficially
plausible, is mistaken in every respect. First,
it is surely absurd to act as if you believed a
hypothesis false, when you are uncertain that
it really is. It would mean, for example, that
you would willingly accept a wager in which
you received £10 if the hypothesis was finally
established to be false, and you had to forego
all your wordly goods if it was finally estab-
lished to be true. No reasonable person
would accept such a bet, without being abso-
lutely certain that the hypothesis in question
really was false. Second, the justification is
fallacious. It starts from the fact that the
probability of rejecting a true null hypothesis
equals the significance level; from this, it in-
fers that if a test were repeatedly performed
using a 0.05 significance level, the approxi-
mate frequency of rejecting a true null hypo-
thesis would be 5 per cent, in the long run.
But the inference is simply a nonsequitur:
you cannot derive from the probability of an
event even the approximate frequency with
which that event will appear in any actual run
of trials, however long. Finally, the justifica-
tion is irrelevant, because it refers to the sup-
posed frequency of drawing a wrong conclu-
sion in a sequence of possibly imaginary
tests, but says nothing about the particular
case at hand.

Scientists often need to know the value of
physical parameter that cannot be measured
directly. The task of gauging the mean height
of a very large population is a simple
example. In such cases, an indirect measure-
ment must be made and this is standardly
done by examining a suitably selected
sample.

Techniques

Classical statisticians have devised tech-
niques that supposedly permit objective esti-
mations of parameters, the principal one
being that of the confidence interval, which
we can explain through the example already
mentioned. Let the unknown, mean popula-
tion height be y. Assume that we know the
standard deviation, g, of heights in the popu-
lation. Now suppose a random sample of size
n is drawn from the population. The mean
height of people in such a sample is a random
variable, m. Clearly m can take many
possible values, some more probable than
others. The distribution representing this
situation is ‘normal’ and its standard
deviation is given by s = ¢//n:

35—

Lu-1.96s u+1.96s
This distribution is a plot of possible
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sample means against probability densities,
not probabilities. The important fact for the
present discussion is that the probability
that m lies between two points is propor-
tional to the area enclosed by them and the
curve. Because the distribution is nor-
mal, it follows that with probability 0.05,
—1.965 < p— m = 1.96s. Rearranging these
inequalities gives the result that with prob-
ability 0.95, m —1.965s = u < m+ 1.96s.
Suppose m'’ is the value of m that is actually
observed in the experimental sample. Then,
because we know o and n, the terms m’
+1.96sand m’ + 1.965 can be determined;
the interval between them is called a 95 per
cent confidence interval for u, and classical
statisticians regard such an interval as a rea-
sonable estimate of u.

The statement that such-and-such is a 95
per cent confidence interval for u seems ob-
jective. But what does it say? It might be im-
agined that a 95 per cent confidence interval
corresponds to a 0.95 probability that the
unknown parameter lies in the confidence
range. Butin the classical approach, pisnota
random variable, and so has no probability.
Nevertheless, statisticians regularly say that
one can be ‘95 per cent confident’ that the
parameter lies in the confidence interval.
They never say why.

In fact, there is a decisive reason why not.
The confidence interval is derived from the
probability distribution of sample means de-
picted above. This distribution gives the
probabilities of all the sample means that you
might have got in the experiment. It is usual
to assume that all those possible samples
have the same size as the actual sample. This
assumption is crucial, because the shape of
the distribution, and hence the width of the
confidence interval, is affected by that size.
Now the set of possible samples is deter-
mined by the experimenter’s intention. If he
had deliberately set out to sample exactly n
people, the usual assumption would be justi-
fied. But suppose each time he selected a per-
son from the population, he also tossed a fair
coin, and that he planned to stop sampling as
soon as the coin had produced 5 heads; or
suppose the plan was simply to examine as
many people as possible before lunch, or be-
fore getting bored. With any of these plans,
the experimenter might still have arrived at a
sample of n, but the set of possible samples
would have been different, and hence, so
would the confidence interval. So the degree
of confidence we are invited to place in an
estimate inevitably depends on the private
plans of the experimenter, which is surely
immensely counterintuitive.

This is the so-called stopping-rule prob-
lem. It also affects significance tests. In our
earlier example, it was assumed, as it nor-
mally would be, that because the coin was
tossed 20 times, all the of possible outcomes
would exhibit 20 heads and/or tails. But
these are the possible outcomes only if the
experimenter had a premeditated plan to
throw the coin 20 times. Had the plan been to
stop the experiment when, say six heads ap-
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peared, he could have got just the result he
did, but with a different list of unrealized,
possible outcomes. Because significance is
calculated by reference to these possibilities,
a result could be significant if the ex-
perimenter had had one plan (or stopping
rule) in mind, but not significant if it was
another.

This dependence of significance tests and
confidence interval estimates on the subjec-
tive, possibly unconscious intentions of the
experimenter is an astonishing thing to dis-
cover at the heart of supposedly objective
methodologies. It is also a most inappropri-
ate thing to find in any methodology, for the
plausibility, or cognitive value, of a hypo-
thesis, and our rational confidence in an esti-
mate should not depend on the contents of
the experimenter’s mind.

Hlusion

Popper’s corroboration idea, and the the-
ories of significance tests and confidence in-
tervals were developed as supposedly objec-
tive methodologies in conscious reaction to
subjective bayesianism. These methods all
issue in apparently objective statements,
couched in a deceptive terminology which
gives the impression that an important, ob-
jective, theoretical evaluation is being
achieved. But this is illusory. Corroborating
a hypothesis does not strengthen it, a signifi-
cant result has no significance for the truth of
the null hypothesis, and a 95 per cent con-
fidence interval has no right to impart con-
fidence, let alone 95 per cent’s worth, to an
estimate.

Unlike these pseudo-objective methodo-
logies, the bayesian approach has a solid
foundation. It provides a unified approach to
deterministic and statistical theories, and to
questions of testing and estimation, unlike
the many ad hoc recipes of the classical ap-
proach. It is also intuitively right. We can il-
lustrate this by sketching the bayesian way of
estimating a population mean. It starts with a
distribution of subjective prior probabilities
over the range of possible values of the par-
ameter. Then, using Bayes’s theorem and the
sample evidence, a corresponding posterior
probability is calculated. The prior prob-
ability curve typically would be very spread
out, indicating considerable initial uncer-
tainty about the parameter value, whereas
the posterior probability would be concen-
trated in a narrow region. Then if 95 per cent
of the area under the curve was enclosed be-
tween two points a and b, the bayesian esti-
mate of the parameter would be of the form
‘plies between a and b with probability 0.95°.

This bayesian conclusion has a clear
meaning and is just the kind of conclusion
people do come to. It is derived from the
mean of the experimental sample alone, not
the means of possible samples. Hence, it is
unaffected by the experimenter’s subjec-
tively intended stopping rule, which is as it
should be. Finally, the posterior distribution
is very insensitive to variations in the prior
distribution, and this insensitivity increases
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rapidly with the sample size. Hence two
people starting from very different prior be-
liefs must converge in their posterior beliefs
as evidence accumulates. Again this seems
realistic and shows that the objection to
bayesianism that it makes scientificinference
purely subjective is misguided.

A traditional complaint against the
bayesian theory is that it introduces numeri-
cal calculations into areas where a rough and
ready reliance on intuitive methodological
principles seems to have worked well
enough. Indeed, bayesian theory subsumes
much basic methodological lore. Why go to
all the trouble of writing down difficult for-
mulas instead of continuing to do what we
did well enough without them?

One answer is that ‘writing down these for-
mulas’ exhibits intuitive procedures as con-
sequences of fundamental principles of
logic. Doing something correctly is one
thing; to know you are doing it correctly, and
why, is equally important. But there isa prac-
tical reason also. The rise of artificial intel-
ligence and in particular the development of
rule-based expert systems have made the
question of what is the best method for mod-
elling uncertain reasoning a matter of great
practical urgency.

Bayesianism is only one of the mathemati-
cal theories of uncertainty currently under
evaluation. The others were largely inspired
by dissatisfaction with the bayesian ap-
proach. The principal alternatives are the
Dempster—Shafer theory!, incorporating a
nonprobabilistic measure of belief due to
Shafer, and Dempster’s rule for combining
evidence; ‘possibility theory’, put forward in
the 1970s and based on fuzzy set-theory?3;
and the approach, also developed in the
1970s, based on so-called certainty factors
and embodied in the MYCIN and EMYCIN
calculi®.

Uncertainty
All these theories embody numerical
measures of uncertainty, and rules for revis-
ing uncertainties under the impact of new
evidence. All are distinct from each other,
though there turn out to be systematic rela-
tionships  between probabilities, the
belief and plausibility measures of the
Dempster—Shafer theory, and possibility
measures’. But only in the bayesian theory
must the assignments of numerical uncer-
tainty to hypotheses satisfy the probability
axioms. Although in the Dempster-Shafer
theory the fundamental quantities are called
basic probability numbers, defined on all the
subsets (roughly, hypotheses) of a frame of
discernment (hypothesis space), these are
not formally probabilities, nor is the belief
function (Bel) constructed from them. In
fact, all the other theories we have men-
tioned contrast with the bayesian by being
nonadditive: that is, the quantities function-
ing as degrees of belief in each do not add
over incompatible alternatives.

There is a vigorous and occasionally
polemical debate under way on the relative
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merits of these different approaches to
modelling uncertainty. With its profusion of
manifestos, it recalls an earlier controversy
about the role of logic in knowledge-based
computer systems. One prominent defender
of the bayesian view, Peter Cheeseman, has
emphasized’ the analogies with that earlier
debate; logic, like probability, had historical
precedence and was well understood, and
the newer representation languages, like the
newer theories of uncertainty, based their
claims on alleged problems with a logic-
based approach.

Controversy

Some of the controversy inevitably turns on
the ease with which the various approaches
can be implemented in computer systems;
bayesian models are not always the most
practical in these situations. They tend to
have exponential informational complexity,
as is also the case with Dempster—Shafer
theory, depending on how many hypotheses
are assigned non-zero probability. By con-
trast, MYCIN and EMYCIN have linear
complexity. But the fundamental disagree-
ments are philosophical, not practical, and
one of the most controversial conceptual
problems alleged to arise within the bayesian
theory, is that of evaluating the probabil-
ities, especially the prior probabilities, to be
plugged into Bayes’s theorem. In most appli-
cations there is relevant background infor-
mation: in a disease diagnosis problem, for
example, this would consist of the available
clinical data, together with some theory. All
this information should be made use of in
determining probabilities. But how should
this be done?

Bayes’s theorem is the standard tech-
nique by which probabilities are adjusted to
data (though there are generalizations of it
which collectively go under the heading of
probability kinematics), and the priors in any
calculation can also be posterior probabil-
ities calculated from the historical data. Ditto
for the priors used in the calculation of those
posteriors. But at some point in this back-
ward progress, prior probabilities will have
to be used which merely reflect opinion. This
allegedly opens the doors to an unwelcome
subjectivism.

To deflect the criticism, there have been
several attempts to provide explicit, ‘objec-
tive’ rules for calculating priors. The best
known is as follows: regard the hypotheses as
defining subsets of some appropriate
universe of ‘elementary’ possibilities, in the
same sort of way that the hypothesis ‘this die
will land an even number upwards’ defines
the subset {2,4,6] of the set {1,2,3,4,5,6} of
possible outcomes of throwing the die. Now
make the prior probabilities, or probability
densities if they form a continuum, of all
these possibilities equal. If the universe of
possibilities is finite and has m members, and
if his true in n of these, then the desired ‘ob-
jective’, or, as it is sometimes called, ‘infor-
mationless’ prior probability of h is equal to
n/m.

© 1991 Nature Publishing Group

A recent attempt to justify equal, or uni-
form, prior probability assignments appeals
to the maximum entropy principle (MEP),
according to which ‘informationless’ prior
distributions are those which maximize un-
certainty, in the sense of Shannon entropy.
For in the absence of constraints other than
those imposed by the probability axioms
themselves, MEP prescribes uniform prior
distributions.

A technical difficulty with uniform prior
distributions is that they cannot properly be
defined over infinite intervals, like the whole
real line. But the major objection to this
strategy is the arbitrariness implicit in the
choice of the space of equiprobable alterna-
tives. There are in general many different
ways of embedding a set of hypotheses and
data in some space or other of possibilities,
and it turns out that depending on which you
choose, you may get different prior probabil-
ities for your hypotheses. And the choice is
bound to be arbitrary because it is supposed
to be made in advance of any empirical infor-
mation (for a more detailed discussion of
these matters see ref. 6).

In short, there seems to be no way of ‘ob-
jectively’ defining prior probabilities. But
our argument has all along been that this is
really no weakness: it allows expert opinion
due weight, and is a candid admission of the
personal element which is there in all scien-
tific work. The inventors of ‘objective’ meth-
odologies, as the statistician and philosopher
I. J. Good is fond of remarking, merely
sweep the personal element under the car-
pet. Also, there are various convergence-of-
opinion theorems, which show that posterior
distributions based on a lot of data are
usually insensitive to priors.

The subjective bayesian theory is the only
one of the various calculi of uncertainty so far
to have been given an explicit and powerful
theoretical justification; and the argument
based on the Dutch book is only one of sev-
eral. The other theories have all been pro-
posed more or less ad hoc, in response to
supposed difficulties in the bayesian scheme.
These other approaches are not valueless;
some can even be regarded as interesting
generalizations of the bayesian theory. But if
a clear and flexible calculus of undcertain
reasoning is required, with a secure founda-
tion in logic, then the subjective bayesian
theory has no real rival. O
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